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Abstract. We discuss the canonical and path integral quantisation of a particle moving on 
a curved manifold. We advance a simple prescription to quantise the system within the 
canonical formalism. An effective Hamiltonian He, is defined as the classical Hamiltonian 
plus a quantum potential term of order hZ. The Hamilton operator is obtained by Weyl 
ordering the expression that results when one replaces coordinates and momenta by their 
corresponding Hermitian operators in the effective Hamiltonian. We construct the phase 
space path integral representation for the propagator in terms of ifeff. When the propagator 
is expressed as a Lagrangian path integral with an invariant measure, an additional 
correction is introduced. 

1. Introduction 

In this paper we consider the description of a quantum mechanical system in a curved 
manifold. In particular, we try to emphasise some relations between the path integral 
and the canonical formalism. 

The formulation of path integrals on curved manifolds has been considered by 
DeWitt [ l ]  and several other authors [2-81. The main conclusion that is drawn from 
this work is that a careful treatment leads to an effective action constructed in terms 
of an effective Lagrangian 

Lea= L - A V  (1.1) 

where L represents the original Lagrangian and AV is a quantum correction propor- 
tional to h2 .  When used in the path integral this effective Lagrangian (and not the 
classical one) gives the correct expression for the Schrodinger propagator. 

On the other hand, it is well known that, in the framework of canonical quantisation, 
the ordering of non-commuting variables leads to serious difficulties. For systems 
described by curvilinear coordinates, these kinds of difficulties were recognised almost 
since the beginnings of quantum mechanics [9]. To deal with them, several ordering 
rules have been proposed, e.g. the rule of Born-Jordan, the Weyl rule, the symmetrisa- 
tion rule, etc. Here, we consider that, for a particle moving in a curved manifold M, 
the kinetic part of the Hamiltonian operator fi coincides with the covariant Laplacian 
defined on M. The replacement of coordinates and momenta by their corresponding 
operators in the classical Hamiltonian accompanied by the choice of the Weyl ordering 
gives us an operator [ H ( 4 p ^ ) ] ,  that differs from fi in a quantity AV, As we show, 
this quantity is related to the correction that appears in the effective Lagrangian used 
in the path integrals. 
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The organisation of the paper is as follows. In § 2 we derive a general expression 
for the quantum correction. The phase space path integral representation of the 
Schrodinger propagator is derived in § 3. The calculations are done using the results 
obtained in § 2 and adopting the midpoint prescription. After performing a momentum 
integration we express the result in  terms of a Feynman integral over paths in the 
configuration space. Finally, we compare our results with previous calculations. 

2. The Effective Hamiltonian in curved spaces 

Consider an n-dimensional manifold M with coordinates q ’ (  i = 1,. . . , n) and a metric 
gij defined on it. We assume that the manifold is non-compact, with each q i  ranging 
from --CO to W. The Lagrangian for a particle moving on M is 

where dots represent differentiation with respect to the time t and the summation 
convention is adopted. In three dimensions, Ai and V can be considered as the vector 
and scalar electromagnetic potentials respectively, but in general they are functions of 
q and t without such special meaning. In the following we assume that they only 
depend on the coordinates and similarly for g o .  The momenta and the Hamiltonian 
function associated with L are given by 

respectively, where g ”  is the inverse of g,] (g”g,, = 8;). 
When we move from classical to quantum mechanics the canonical variables q and 

p become Hermitian operators, 4 and 6, with eigenstates 14, t )  and I p ,  t ) .  These operators 
satisfy the commutation relations 

(2.4) 
The eigenstates of 4‘ are normalised according to 

(q” ,  t l q ’ ,  t ) =  6(q”;  q ’ )  = g - ” 4 ( q ” ) 8 ( q ” - q ’ ) g - 1 ’ 4 ( q ’ ) .  (2.5) 
The quantity g ( q )  is the determinant of the metric tensor and S ( q ” -  q ’ )  is an ordinary 
n-dimensional delta function. 

We assume that the eigenstates )q ,  t )  form a complete set 

j- g ” * ( q )  d“qlq, t x q ,  tI = 1 (2.6) 

where g ” ’ ( q )  d“q = g ’ ” ( q )  dq’ . . . dq“ represents the invariant volume element. 

ger equation 
The wavefunction yl( q, t )  = (q ,  t l q )  associated with the state IY) obeys the Schrodin- 

(2.7) 
where the Hermitian operator represents the Hamiltonian of the system. For 
quantised systems with no non-classical degrees of freedom like spin q is a scalar 
function. 

i h a q ( q ,  t ) / a t  = f i q ( q ,  t )  
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The Hamilton operator has to be constructed in such a way as to guarantee the 
covariance of the wave equation. For the special case of a flat space, following Podolsky 
[9], one can first write down the Hamiltonian in Cartesian coordinates and then carry 
out the change of coordinates. The result is 

fi  = -$h2A2+ihA’d, +i$hg-”2a,(g”2A’) +$A’A, + V 

h2 = g-”2a,(g1/’gzJa,). (2.9) 

(2.8) 
where a ,  = a/aq ’  and A2 represents the covariant Laplace-Beltrami operator 

We will assume that equation (2.8) remains valid even for non-vanishing curvature. 
The quantum operator associated with the classical Lagrangian (2.1) could, in principle, 
contain additional (scalar) contributions constructed from the Ricci tensor. All these 
possible extra terms vanish when h + 0 and therefore they do not contribute to the 
classical limit. For simplicity we do not include them. 

The commutation relations (2.4), together with the hermicity condition, give us the 
following coordinate representation for the momentum operator: 

6, = - ih(a ,  +@,) (2.10) 

r, = r;, = g-1/2alg1/2 (2.11) 

with 

r: being the affine connection or Christofell symbol of the second kind ( r t= 
In the present paper, we adopt the Weyl rule [lo] for constructing the quantum 

operator corresponding to the classical Hamiltonian (2.3). In this way, we will be able 
to derive an explicit expression for the quantum potential. 

For our purpose, we only need to consider functions which depend arbitrarily on 
q, but at most quadratically on p. In this case, the corresponding Weyl-ordered operators 
are given by 

(2.12) 

+g k’(a,gff + a,gtr - afg, 1). 

If( 4)81w = fcrc 418 +if (4)  1 
If( 4 ) t 2 1 u  = aCf(4)i’ + 2bf(4)p* + i2f( a). (2.13) 

Equation (2.13), together with (2.10), gives us 

~p* l~”~4~i , lw=a~p* lp* ,~”+~t lg” f ,  +g”,p*,) 

= -fh2{4gIJ[a,a, + r,a, +t(a,r,) +fr,r,] +4(a,gy)(a, ++I-,) + (a,a,gtJ)). 
(2.14) 

After some algebra this expression can be written as 

[ plg ‘I ( 4 )eJ 3 = - A ( s2 + f~ + fg’ l r  Sr;, ) (2.15) 
where A2 is the second-order differential operator defined in equation (2.9) and R = gYR, 
represents the scalar curvature. In our notation [ 1 1 1  the Ricci tensor R, = Rk,,k is given 

(2.16) 
Next, we consider the other terms of (2.3). From (2.12) we immediately see that 

by 

R , ~  = a,r Fk - ak  r; + r ikr; - r f,r :, . 

[ g ” (4  1 A, ( 4 )e, 1 = f ( 8  ‘AA,$, + $,g”A, 1 
= -ih(A‘a, + ig-‘/2a,(g’’2A’)). (2.17) 
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Finally, using the results of equations (2.15) and (2.17) and taking into account 
that [A’AllW = A’A, and [VI, = V we find 

A,=A-AV. (2.18) 
Here fi is the Hamiltonian given in (2.8) which we are presently assuming to describe 
the system, while 

Av(q) = i h 2 ( ~  +gfirf;r;k) (2.19) 
represents a quantum correction which vanishes in the classical limit ( h  -+ 0). 

The foregoing results can be used to outline a procedure to quantise the system 
along the usual canonical formalism as follows. 

Corresponding to the Lagrangian (2.1) that describes the classical dynamics of a 
particle moving in a Riemannian space, we associate an effective Lagrangian Leff given 

(2.20) 
where A V  is determined by the structure of the Riemann manifold and is given by 
(2.19). From (2.20) and (2.2) we can calculate the effective Hamiltonian 

by 
L ( q ,  4 )  = L(q, 4 )  - A V(q) = $4’g&’ + A4‘ - ( V+ A V) 

Heff(q9 P) = 4’pt - Leff(q, P) = t( P I  - A ,  )g”(p, -A,) + V+ A (2.21) 

The system is now quantised, replacing the variables q and p by Hermitian operaJors 
{ and $ that fulfil the commutation relations (2.4). The Hamiltonian operator H of 
the system is obtained when one makes the above replacement in He,(q, p )  and uses 
the Weyl-ordering rule, i.e. 

(2.22) 
By using the coordinate realisation of $ as given in (2.10), the right-hand side of 

(2.22) reduces to (2.8). 
It is important to remark on the following points. (i)  The effective Lagrangian 

and the effective Hamiltonian are classical in the sense that they depend on classical 
variables q and p ,  but they contain an extra potential term that is quadratic in the 
Planck constant. (ii) When the Hamiltonian operator fi is written as a Weyl-ordered 
expression it shows an explicit dependence on the effective quantum potential. In the 
next section we will see that the result (2.22) is particularly suited to derive the path 
integral representation for the propagator. 

A = [ He*( 4, $)Iw = $8‘ g”$,], - [A,  g”$,], + t A ’A, + V + A V .  

3. From the canonical to the path integral formalism 

The propagator from q’ at time t’ to q” at time t” is 

(3.1) 
where fi is the time-independent Hamilton operator given in (2.8) that, according to 
(2.22), coincides with [fieR],. 

We follow the standard procedure to obtain the path integral representation for 
(3.1), namely, we split up the time interval ( t ’ ,  t”) into a large number N of short 
intervals. Then we use the completeness relation (2.6) to write 

K(q” ,  t ’ lq ’ ,  t ’ )  = (q”1 exp[-(i/h)(t”- t’)A]lq’) 

where E = ( t ” -  ?’)/ N and q,, = q‘, qN = q“ 
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The eigenvectors of the momentum operator (2.10) are chosen to have the coordinate 
representation 

( 1 )1'4exp(fp.q) 
(q ' p )=  (2**)"/2 u(p)g(q)  (3 .3)  

where p.q=piqi. The arbitrary function u(p) is included in order to identify 
[ U (  P ) ] " ~  dflp with the volume element in momentum space. The expectation values 
of p*' ( r  = 1,2) are calculated using the completeness relation in momentum space and 
(3.3): 

(3.4) 

Notice that u ( p )  has cancelled out in the final expression. 
We need to compute the expectation value for a Weyl-ordered product of momentum 

and position operators. For f($) = 3"' equations (2.12) and (2.13) may be written as 

m !  
(i"-'p*'Ci' (3.5) 

that is used to obtain 

In (3.5) and (3.6), r = 1,2. For a product of p* or p̂' with an arbitrary function of f(i), 
we expand f($) and use (3.4) and (3.6) to get 

We are now ready to compute the short-time propagator that appears in equation 
(3.2).  Employing the result given in (3.7) together with (2.22) and the orthogonal 
relation (2.5), to order E we obtain 

(qbl e x p ( - i h - ' ~ [ ~ ~ e l ~ ) ~ q b - l )  

1 
[ g ( q b ) g ( q b - l ) l ' "  1 & 

{ 1 - - ' ' ( q b  - AI ( q b  g ' ( q b  pi 
+ (gb)A'(qb) + V ( q b )  +Av(qb)]) 

xexp(fp*(qb -4b-I)) 

where q b  = (qb + qb-1)/2 and Aqb = ( q b  - qb-l)i. Notice that the infinitesimal time propa- 
gator has been expressed as a function of the effective Hamiltonian given in (2.21) 
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evaluated at the midpoint q b .  Substituting the above expression into (3.2) we obtain 
the following expression for the complete propagator: 

xeXP(i& h b = l  E [Pb.Aqb/E-Heff(QbrPb)l ) . (3.9) 

Note that p and q are classical variables. Problems with operator ordering have 
apparently been lost, but they are really translated to the choice of the specific point 
where the functions are evaluated [ 12-14]. 

It is interesting to remark that equation (3.9) looks like a usual Hamiltonian path 
integral representation for the propagator; however, an effective Hamiltonian has to 
be used. This effective Hamiltonian has an extra contribution 

Av=$f i2(R+giJrf ;r; , )  

compared to the classical Hamiltonian and takes into account that we are working in 
a curved manifold. 

In order to cast equation (3.9) into a Lagrangian path integral over configuration 
space, we have to perform the momentum integrations. This can be readily carried 
out using 

d “P o”/z exp( -: &P, - A l ) g ” ( ~ J  --AJ) -p,Aq’/E - ( V + A V ) I  

2 E  1 Aq‘ Aq’ “’ E ( V + A V ) ) ]  (3.10) = (E) g’/2 exp[ E (- - g, E+ A, - - 
n / 2  

where all the functions are evaluated at the midpoint ( q +  4’)/2 and Aqi = (4’-  q) i .  
The result is 

(3.11) 

Le,(q, q )  being the effective Lagrangian defined in (2.20) evaluated at q = q b  and 

It seems that there is an additional contribution to the measure coming from the 
factor [g(qb)]”2/[g(qb)g(qb-l)]’’4, which will produce a non-invariant volume element. 
However, it is possible to incorporate it into the exponential factor as an extra potential 
term. We need the result 

4 = (qb -qb-I)/E. 

[g ( q b  )g  ( q b -  1 ) = [g ( q b  1 + I, ( g b  ) Aqb Aqi -k - * * 1 * (3.12) 

In (3.12) we have only retained terms that are quadratic in Aq because the higher-order 
terms do not contribute to the path integral in the limit E + 0. This is true since terms 
of order Aq2 act like terms of order E when in the integrand of a path integral. In 
fact, under a path integral it is valid to make the following replacement [ l ,  21: 

A q ‘ h q ’ j  iheg”.  (3.13) 
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Substituting (3.12) into (3 .11)  and using (3.13) we obtain the Lagrangian path 
integral representation for the propagator 

(3.14) 

where AV’ = ih2gUajrji. Notice that the measure contains the factor gl/’ evaluated at 
the mesh points and therefore the volume element g”2(qa) d”qa is the invariant one 
for each a. 

Equation (3.14) shows that, in order to represent the propagator by the Lagrangian 
form of the path integral, we have to add another correction AV’ to the classical 
Lagrangian. So, the total quantum potential AV,,, becomes 

A V,,, = A V + A V’ = !ti2[ R + gv(  r:I-jk + ajr i i)] .  (3 .15)  

Equation (3.15) is essentially the result that was obtained by McLaughlin and 
Schulman [2], expanding the action around classical paths and retaining terms of order 
up to (Aq)4 (see also [8]). Actually their result differs from (3.15) by a term &h2R, 
but this is because we have computed the propagator generated by H (2.8), while in 
[ 1,2 ,8]  they consider the propagator for the Hamiltonian fi  -&h2R. Considering the 
so-called Weyl transform Mizrahi [6] presented a derivation for the effective potential 
that contains the first two terms of the right-hand side of equation (3.15). As we have 
shown, an extra term appears if one insists in having an invariant measure. It is 
important to remark that the quantum potentials A V  and A V’ are present even in a 
flat space when non-Cartesian coordinates are used. This question has been analysed 
by several authors [ 15-20] in connection with path integrals in curvilinear coordinates. 

In a recent work [21], the quantum correction was derived using an ordering 
different from the Weyl one. A V  was calculated according to t  

A V =  12-$[$~g~J(q)$~] =~h2[g”irj+2ai (g”j ) l  (3.16) 

with T i  given by (2.11). It is claimed, without a proof, that (3.16) is the ‘correct’ 
expression to be used in a Lagrangian path integral. Furthermore, Grosche and Steiner 
assert that other results for A V  are wrong (e.g. DeWitt [ 13, McLaughlin and Schulman 
[2], Marinov [8], Gervais and Jevicki [19]). Apparently they did not take into account 
that different ordering rules in the Hamiltonian translate into different prescriptions 
to evaluate functions that appear in the path integrals [12-141. Therefore, their claim 
is ill founded. 

The ordering given in (3.16) corresponds to the prescription that, under the path 
integral, any function f ( q )  has to be approximated by (see the appendix) 

(3.17) 

where, as before, i j b  represents the middle point. This fact has also been overlooked 
in their work. On the other hand, in the examples they presented, f ( q )  was approxi- 
mated by f q b - 1 )  which, in general, is associated with an ordering different 
from (3.16) (see the appendix). However, it worked correctly since AV coincided for 
both orderings in the particular cases they considered. 

2f ( 4 6 )  - & f ( q b )  + f ( q b -  1 ) I  

qb) f 

t Without loss of generality, here we set V and A, equal to zero. 
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4. Conclusions 

In this paper we have considered the quantisation of a system in curved manifolds. 
The phase space path integral representation for the propagator was constructed in 
terms of an effective Hamiltonian which differs from the classical one by a quantum 
correction of order h2. A simple derivation of the general expression for this correction 
was first presented by adopting the canonical formalism. When the propagator is 
expressed as a Lagrangian path integral with an invariant measure, an additional 
contribution to the quantum potential is introduced. 
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Appendix 

In this appendix, we list the expressions for the quantum potential A V  corresponding 
to some ordering rules. We also state the prescription that should be used to evaluate 
any coordinate function f( q )  that appears in the Hamiltonian path integral. To derive 
these results we proceed in the same way as in 0 2 of this paper. 

(i)  Weyl rule: 

AV, = B -t[p^lgyq);J], = :h2[~+g~rTf;r ; , l  

where I? = -4h 'A2. 

Prescription: f ( q )  + f ( I j b ) .  

(ii) 

A V =  I? -fp^,gy(q)$J = A V w - ~ h 2 a , a J g y  

= d h2[ g IJr I r, + 2a, ( g y r ,  )I. 

Prescription: f (  4 )  + 2f( qb) - f l f (qb)  +f(qb-l)]. 

( i i i )  Symmetric rule: 

A V, = I? - a[ g 'I ( q 

Prescription:f(q) + f L f ( q b ) + f ( q b - l ) ] .  

+ filCJg ( q ) ] = A V, + d h 'a I aJg ' I .  

(iv) A V =  k? -fh'k(q)p^,j?JhkJ(q) 

= AV,-~h2a ,aJgy  +dhh'ka,a,hkJ 

where hikhkJ = gy. 

Prescription: f ( q )  + I f ( q b ) f ( q b - 1 ) ] " ' .  
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In all the previous examples gy appears symmetrically with respect to and this 
leads to a A V  independent of $. As we see below an asymmetric choice will produce 
an effective potential that is momentum dependent. 

(v) ~ v = k - i  2g IJ (q)P*l$J 

= A V, - Q h ' a  ,aJgIJ - ii h (d lg ) 6). 
We recall that the transition from the Hamiltonian to the Lagrangian path integral can 
generate extra contributions to the effective potential. 

Note added. After this work was completed we notice that, in the final version of the paper by Grosche 
and Steiner [22], they corrected some of the mistakes we have pointed out. Although they now compute 
A V  using the Weyl ordering, they do not consider the third term of equation (3.15). 
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